Chen Y., Hajslova J.,Schusterova D., Uttl L., Vymazal J., Chen Z. (2024): Transformation and degradation of tebuconazole and its metabolites in constructed wetlands with arbuscular mycorrhizal fungi colonization. Water Research 263: 122129, doi.org/10.1016/j.watres.2024.122129.
Lam A. H. C., Cooke A., Wright H., Lawson D. W., Charpentier M. (2024): Evolution of endosymbiosis-mediated nuclear calcium signaling inland plants. Current Biology 34: 2212–2220, doi.org/10.1016/j.cub.2024.03.063.
Ofori-Agyemang F., Waterlot Ch., Manu J., Laloge R., FrancinR., Papazoglou E. G., Alexopoulou E., Sahraoui A., Tisserant B., Mench M., BurgesA., Oustriere N. (2024): . Plant testing with hemp and miscanthus to assess phytomanagement options including biostimulants and mycorrhizae on a metal-contaminated soil to provide biomass for sustainable biofuel production. Science of the Total Environment 912: 169527, doi.org/10.1016/j.scitotenv.2023.169527.
Sousa B., Soares C., Sousa F., Martins M., MateusP., Rodrigues F., Azenha M., Moutinho-Pereira J., Lino-Neto T., Fidalgo F.(2024): Enhancing tomato plants’ tolerance to combined heat and salt stress – The role of arbuscular mycorrhizae and biochar. Science of the Total Environment 948: 174860, doi.org/10.1016/j.scitotenv.2024.174860.
Nemeskéri E., Le A.L., Bakr J., Posta K., Neményi A.B., PékZ., Takács S., Helyes L. (2023): Application of mycorrhizae and rhizobacteria inoculations in the cultivation of processing tomato under water shortage. Acta Agraria Debreceniensis, vol. 2: 111-118, DOI:10.34101/ACTAAGRAR/2/13340.
Basiru S., Hijri, M. (2022): The potential applications of commercial arbuscular mycorrhizal fungal inoculants and their ecological consequences. Microorganisms 10: 1897, doi.org/10.3390/microorganisms10101897.
CiadamidaroL., Pfendler S., Girardclos O., Zappelini C., Binet P., Bert V., Khasa D., BlaudezD. Chalot M. (2022): Mycorrhizal inoculation effects on growth and the mycobiome of poplar on two phytomanaged sites after 7-year-short rotation coppicing. Front. Plant Sci. 13:993301, doi:10.3389/fpls.2022.993301.
Popescu G. C., Popescu M. (2022): Role of combined inoculation with arbuscular mycorrhizal fungi, as a sustainable tool, for stimulating the growth, physiological processes, and flowering performance of lavender. Sustainability 14:951, doi.org/10.3390/su14020951.
Smýkalová I., Seidenglanz M., Horáček J., Ondráčková E., Pozdíšek J., Látr A., Zavřelová P., Kronusová O. (2022): Effect of field pea (Pisum sativum L.) seed stock biocoating on growth of crop and forage parameters of pea haylage assessed under ecological farming conditions. Cattle Research, vol. 2: 4-14.
Yang Q., Ravnskov S., Pullens J. W. M., Andersen M. N. (2022): Interactions between biochar, arbuscular mycorrhizal fungi and photosynthetic processes in potato (Solanum tuberosum L.). Science of The Total Environment, 816: 151649, doi.org/10.1016/j.scitotenv.2021.151649.
Duc N. H., Vo A. T., Haddidi I., Daood H., Posta K. (2021): Arbuscular mycorrhizal fungi improve tolerance of the medicinal plant Eclipta prostrata (L.) and induce major changes in polyphenol profiles under salt stresses. Front. Plant Sci.11:612299. doi: 10.3389/fpls.2020.612299.
Laranjeira S., Fernandes-Silva A., Reis S., Torcato C.,Raimundo F., Ferreira L., Carnide V., Marques G. (2021): Inoculation of plant growth promoting bacteria and arbuscular mycorrhizal fungi improve chickpea performance under water deficit conditions. Applied Soil Ecology, 164: 103927, doi.org/10.1016/j.apsoil.2021.103927.
Mayer Z., Csorbainé A. G., Juhász Á., Ombódi A., Pápai A., Némethné B. K., Posta K. (2021): Impact of soil‐applied microbial inoculant and fertilizer on fungal and bacterial communities in the rhizosphere of Robinia sp. and Populus sp. plantations. Forests, 12: 1218, doi.org/10.3390/f12091218.
Nogales A., Rottier E., Campos C., Victorino G., Costa J. M., Coito J. L., Pereira H. S., Viegas W., Lopes C. (2021): The effects of field inoculation of arbuscular mycorrhizal fungi through rye donor plants on grapevine performance and soil properties. Agriculture, Ecosystems & Environment, 313: 107369, doi.org/10.1016/j.agee.2021.107369.
Pacheco I., Ferreira R., Correia P., Carvalho L., DiasT., Cruz C. (2021): Microbial consortium increases maize productivity and reduces grain phosphorus concentration under field conditions. Saudi Journal of Biological Sciences, 28 (1): 232-237, doi.org/10.1016/j.sjbs.2020.09.053.
Peña V. R. A., Lee S.-J., Thuita M., Mlay D. P., Masso C., Vanlauwe B., Rodriguez A.,Sanders I. R. (2021): The phosphate inhibition paradigm: host and fungal genotypes determine arbuscular mycorrhizal fungal colonization and responsiveness to inoculationin cassava with increasing phosphorus supply. Front. Plant Sci. 12: 693037, doi:10.3389/fpls.2021.693037.
Pokluda R., Ragasova L., Jurica M., Kalisz A., Komorowska M., Niemiec M., Sekara A. (2021):Effects of growth promoting microorganisms on tomato seedlings growing in different media conditions. PLoS ONE 16 (11): e0259380, doi.org/10.1371/journal.pone.0259380.
Victorino G., Santos E.S., Abreu M.M., Viegas W., NogalesA. (2021): Detrimental effects of copper and EDTA co-application on grapevine root growth and nutrient balance. Rhizosphere 19: 100392, doi.org/10.1016/j.rhisph.2021.100392.
Ziane H., Hamza M., Meddad-Hamza A. (2021): Arbuscular mycorrhizal fungi and fertilization rates optimize tomato (Solanum lycopersicum L.) growth and yield in a Mediterranean agroecosystem. Journal of the Saudi Societyof Agricultural Sciences, 20 (7): 454-458, doi.org/10.1016/j.jssas.2021.05.009.
Hu S., Hu B., Chen Z., Vosátka M., Vymazal J. (2020): Antioxidant response in arbuscular mycorrhizal fungi inoculated wetland plant under Cr stress. Environmental Research 191: 110203, doi.org/10.1016/j.envres.2020.110203.
Mota I., Sanchez-Sanchez J., Pedro L. G., Sousa M. J. (2020) : Composition variation of the essential oil from Ocimum basilicum L. cv. Genovese Gigante in response to Glomus intraradices and mild water stress at different stages of growth. Biochemical Systematics and Ecology 90: 104021. https://doi.org/10.1016/j.bse.2020.104021.
Pauwels, R., Jansa, J., Püschel, D. et al. (2020): Root growth and presence of Rhizophagus irregularis distinctly alter substrate hydraulic properties in a model system with Medicago truncatula. Plant Soil 457:131–151, https://doi.org/10.1007/s11104-020-04723-w
Peña R., Robbins C., Corella J. C., Thuita M., Masso C., Vanlauwe B., Signarbieux C.,Rodriguez A., Sanders I. R. (2020): Genetically different isolatesof the arbuscular mycorrhizal fungus Rhizophagus irregularis induce differential responses to stress in cassava. Front. Plant Sci. 11: 596929, doi:10.3389/fpls.2020.596929
Pereira S., Singh S., Oliveira R. S., Ferreira L.,Rosa E., Marques G. (2020): Co-inoculation with rhizobia and mycorrhizal fungi increases yield and crude protein content of cowpea (Vigna unguiculata (L.) Walp.) under drought stress. Landbauforschung, 70 (2): 56 – 65, doi.org/10.3220/LBF1607613362000.
Rydlová J., Püschel D. (2020): Arbuscular mycorrhiza, but not hydrogel, alleviates drought stress of ornamental plants in peat-based substrate. Applied Soil Ecology146: 103394, doi.org/10.1016/j.apsoil.2019.103394.
Savary R., Dupuis C., Masclaux F. G., Mateus I. D., Rojas e. C., Sanders I. R. (2020): Genetic variation and evolutionary history of a mycorrhizal fungus regulate the currency of exchange in symbiosis with the food security crop cassava. The ISME Journal 14: 1333–1344, doi.org/10.1038/s41396-020-0606-6.
Vávra R. (2020): Importance of mycorrhizal fungi application in the cherry planting. Zahradnictvi 11: 38-40.
Yang Q., Ravnskov S., Neumann Andersen M. (2020): Nutrient uptake and growth of potato: Arbuscular mycorrhiza symbiosis interacts with quality and quantity of amended biochars. J. Plant Nutr. Soil Sci., 183:220-232, doi.org/10.1002/jpln.201900205.
Aliyu I. A., Yusuf A. A., Uyovbisere E. O., Masso C., Sanders I. R. (2019): Effect of co-application of phosphorus fertilizer and in vitro-produced mycorrhizal fungal inoculants on yield and leaf nutrient concentration of cassava. PLoSONE 14 (6): e0218969, doi.org/10.1371/journal.pone.0218969.
Bączek K. B., Wiśniewska M., Przybył J. L., Kosakowska O., Węglarz Z. (2019): Arbuscular mycorrhizal fungi in chamomile (Matricaria recutita L.) organic cultivation. Industrial Crops and Products 140: 111562, doi.org/10.1016/j.indcrop.2019.111562.
Ceballos I., Mateus I. D., Peńa R., Peńa-Quemba D. C., Robbins Ch., Ordońez Y. M., Rosikiewicz P., Rojas E. C., Thuita M., Mlay D. P., Masso C., Vanlauwe B., Rodriguez A., Sanders I. R. (2019): Using variation in arbuscular mycorrhizal fungi to drive the productivity of the food security crop cassava. bioRxiv 830547, doi:https://doi.org/10.1101/830547.
Ma Y., Látr A., Rocha I., Freitas H., Vosátka M., Oliveira R.S. (2019): Delivery of inoculum of Rhizophagus irregularis via seed coating in combination with Pseudomonas libanensis for cowpea production. Agronomy 2019, 9 (1), 33; doi:10.3390/agronomy9010033
Nogales A., Santos E.S., Abreu M.M., Arán D., Victorino G., Pereira H.S., Lopes C.M., Viegas W. (2019): Mycorrhizal inoculation differentially affects grapevine’s performance in copper contaminated and non-contaminated soils. Front. Plant Sci. 9:1906. doi: 10.3389/fpls.2018.01906
Ouledali S., Ennajeh M., Ferrandino A., Khemira H., Schubert A., Secchi F. (2019): Influence of arbuscular mycorrhizal fungi inoculation on the control of stomata functioning by abscisic acid (ABA) in drought-stressed olive plants. South African Journal of Botany 121: 152-158, doi.org/10.1016/j.sajb.2018.10.024.
Pereira S., Mucha A., Gonçalves B., Bacelar E., Látr A., Ferreira H., Oliveira E., Marques G. (2019): Improvement of faba bean growth and yield by inoculation with Rhizobium laguerreae and arbuscular mycorrhizal fungi. Crop and Pasture Science 70(7): 595-605, doi.org/10.1071/CP19016.
Rocha I., Duarte I., Ma Y., Souza-Alonso P., Látr A., Vosátka M., Freitas H., Oliveira R. S. (2019): Seed coating with arbuscular mycorrhizal fungi for improved field production of chickpea. Agronomy 9, 471, doi:10.3390/agronomy9080471.
Rocha I., Ma Y., Carvalho M.F., Magalhães C., Janoušková M., Vosátka M., Freitas H., Oliveira R.S. (2019): Seed coating with inocula of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria for nutritional enhancement of maize under different fertilisation regimes. Archives of Agronomy and Soil Science, 65:1, 31-43, doi: 10.1080/03650340.2018.1479061
Rocha I., Souza‐Alonso P., Pereira G., Ma Y., Vosátka M., Freitas H., Oliveira R. S. (2019): Using microbial seed coating for improving cowpea productivity under a low‐input agricultural system. Science of Food and Agriculture 100 (3): 1092-1098, doi.org/10.1002/jsfa.10117.
Cabral C., Wollenweber B., António C., Rodrigues A.M., Ravnskov S. (2018): Aphid infestation in the phyllosphere affects primary metabolic profiles in the arbuscular mycorrhizal hyphosphere. Scientific Reports 8:14442. DOI:10.1038/s41598-018-32670-1
Costa J., Oliveira R.S., Tiago I., Ma Y., Galhano C., Freitas H., Castro P. (2018): Soil Microorganisms: In: Sánchez-Moreiras A., Reigosa M. (eds) Advances in Plant Ecophysiology Techniques. Springer Cham, 497 p.
Cseresnyés I., Szitár K., Rajkai K., Füzy A., Mikó P., Kovács R., Takács T. (2018): Application of electrical capacitance method for prediction of plant root mass and activity in field-grown crops. Front. Plant Sci. 9:93. doi: 10.3389/fpls.2018.00093
Debeljak M., van Elteren J. T., Spruk A., Izmer A., Vanhaecke F., Vogel-Miku K. (2018): The role of arbuscular mycorrhiza in mercury and mineral nutrient uptake in maize. Chemosphere 212: 1076-1084. https://doi.org/10.1016/j.chemosphere.2018.08.147
DiasT., Correia C., Carvalho L., Melo J., de Varennes A., Cruz C. (2018): Arbuscula rmycorrhizal fungal species differ in their capacity to overrule the soil’s legacy from maize monocropping. Applied Soil Ecology, 125: 177-183. doi.org/10.1016/j.apsoil.2017.12.025
Gryndler M., Šmilauer P., Püschel D., Bukovská P., Hršelová H., Hujslová M., Gryndlerová H., Beskid O., Konvalinková T., Jansa J. (2018): Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza 28
Jeffery R.P., Simpson R.J., Lambers H., Orchard S., Kidd D.R, Haling R.E., Ryan M.H. (2018): Contrasting communities of arbuscule-forming root symbionts change external critical phosphorus requirements of some annual pasture legumes. Applied Soil Ecology, Vol 126: 88-97. doi.org/10.1016/j.apsoil.2018.01.009
Kučová L., Kopta T., Sękara A., Pokluda R. ( 2018): Controlling nitrate and heavy metals content in leeks (Allium porrum L.) using arbuscular mycorrhizal fungi inoculation. Pol. J. Environ. Stud., Vol. 27 (1), 137-143. DOI: 10.15244/pjoes/73799.
Lazarevic B., Carovic-Stanko K. (2018): Effect of arbuscular mycorrhizae on phosphorus deficit stress during early development stage of basil (Ocimum basilicum L.). CMAPSEEC 2018, May 20-24, 2018, Split, Croatia.
Lazarevic B., Losak T., Manschadi A.M. (2018): Arbuscular mycorrhizae modify winter wheat root morphology and alleviate phosphorus deficit stress. Plant Soil Environ., 64: 47-52. doi: 10.17221/678/2016-PSE
Ouledali S., Ennajeh M., Zrig A., Gianinazzi S., Khemira H. (2018): Estimating the contribution of arbuscular mycorrhizal fungi to drought tolerance of potted olive trees (Olea europaea). Acta Physiol Plant 40, 81. https://doi.org/10.1007/s11738-018-2656-1
Savary R., Villard L., Sanders I.R. (2018): Within-species phylogenetic relatedness of a common mycorrhizal fungus affects evenness in plant communities through effects on dominant species. PLoS ONE 13(11).
Aliyu I.A., Yusuf A.A. (2017): Interaction between phosphorus fertilizer and arbuscular mycorrhizal fungal inoculants on yield components of cassava in northern Guinea savanna alfisols of Nigeria. Bayero Journal of Pure and Applied Sciences, 10(1), doi: 10.4314/bajopas.v10i1.49S
Bozsoki Z., Cheng J., Feng F., Gysel K., Vinther M. et al. (2017): Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. PNAS 114 (38): E8118-E8127. https://doi.org/10.1073/pnas.1706795114
Ciadamidaro L., Girardclos O., Bert V., Zappelini C., Yung L., Foulon J., Papin A. Roy S., Blaudez D., Chalot M. (2017): Poplar biomass production at phytomanagement sites is significantly enhanced by mycorrhizal inoculation. Environmental and Experimental Botany. 139. 10.1016/j.envexpbot.2017.04.004.
Fonseca M. B., Dias T., Carolino M. M., França N. G. C., Cruz C. (2017): Belowground microbes mitigate plant-plant competition. Plant Science, 262: 175-181, doi.org/10.1016/j.plantsci.2017.06.006.
Kodre A., Arčon I., Debeljak M., Potisek M., Likar M., Vogel-Mikuš K. (2017): Arbuscular mycorrhizal fungi alter Hg root uptake and ligand environment as studied by X-ray absorption fine structure. Environmental and Experimental Botany, 133: 12-23, doi.org/10.1016/j.envexpbot.2016.09.006
Oliveira R.S., Carvalho P., Marques G., Ferreira L., Nunes M., Rocha I., Ma Y., Carvalho M.F., Vosátka M., Freitas H. (2017): Increased protein content of chickpea (Cicer arietinum L.) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions. J Sci Food Agric, DOI 10.1002/jsfa.8201.
Oliveira R.S., Carvalho P., Marques G., Ferreira L., Pereira S., Nunes M., Rocha I., Ma Y., Carvalho M.F., Vosátka M., Freitas H. (2017): Improved grain yield of cowpea (Vigna unguiculata) under water deficit after inoculation with Bradyrhizobium elkanii and Rhizophagus irregularis. Crop & Pasture Science 68(10–11):1052-1059, doi.org/10.1071/CP17087
Phanthavongsa P., Chalot M., Papin A., Lacercat-Didier L., Roy S., Blaudez D., Bert V. (2017): Effect of mycorrhizal inoculation on metal accumulation by poplar leaves at phytomanaged sites. Environmental and Experimental Botany 143: 72-81, doi.org/10.1016/j.envexpbot.2017.08.012
Repáč I. (2017): Stav lesnej kultúry smreka obyčajného a borovice lesnej tri roky po výsadbe na kalamitnú plochu v Strážovských vrchoch. pp. 7-14. In: Aktuálníe problémyv zakladaní a pestovaní lesa. Zborník referátov z 5. ročníka konferencie, Snina, 5.-6.10.2017.
Savary R., Masclaux F.C., Wyss T., Droh G., Cruz Corella J., Machado A.P., Morton, J.B., Sanders I.R. (2017): A population genomics approach shows widespread geographical distribution of cryptic genomic forms of the symbiotic fungus Rhizophagus irregularis. The ISME Journal, 1–14, DOI:10.1038/ismej.2017.153.
Tarraf W., Ruta C., Tagarelli A., De Cillis F., De Mastro G. (2017): Influence of arbuscular mycorrhizae on plant growth, essential oil production and phosphorus uptake of Salvia officinalis L. Industrial Crops and Products 102: 144-153, doi.org/10.1016/j.indcrop.2017.03.010
Zhao J., Bodner G., Rewald B., Leitner D., Nagel K.A., Nakhforoosh A. (2017): Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems. Journal of Experimental Botany, Vol. 68 (5): 965-982. doi:10.1093/jxb/erw494
Andrejiová A., Mezeyová I., Hegedűsová A. (2016): Impact of the Symbivit preparation on quantitative and qualitative indicators of tomato (Lycopersicon esculentum Mill.) Potravinarstvo, vol. 10 (1), p. 631-636. doi:10.5219/677
Cabral C., Ravnskov S., Tringovska I., Wollenweber B. (2016): Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress. Plant Soil 408:385–399, DOI: 10.1007/s11104-016-2942-x.
Kučová L., Záhora J., Pokluda R. (2016): Effect of mycorrhizal inoculation of leek Allium porrum L. on mineral nitrogen leaching. Hort. Sci. (Prague) Vol. 43 (4): 195–202. doi: 10.17221/182/2015-HORTSCI
Luna E., Beardon E., Ravnskov S., Scholes J. D., Ton J. (2016): Optimizing chemically induced resistance in tomato against Botrytis cinerea. Plant Disease 100 (4): 704-710. doi.org/10.1094/PDIS-03-15-0347-RE
Maček I., Šibanc n., Kavšček M., Lestan D. (2016): Diversity of arbuscular mycorrhizal fungi in metal polluted and EDTA washed garden soils before and after soil revitalization with commercial and indigenous fungal inoculum. Ecological Engineering 95: 330-339. doi.org/10.1016/j.ecoleng.2016.06.026
Oliveira R.S., Rocha I., Ma Y., Vosátka M., Freitas H. (2016): Seed coating with arbuscular mycorrhizal fungi as an ecotechnological approach for sustainable agricultural production of common wheat (Triticum aestivum L.). Journal of Toxicology and Environmental Health, Part A, DOI: 10.1080/15287394.2016.1153448
Zhao J., Bodner G., Rewald B. (2016): Phenotyping: using machine learning for improved pairwise genotype classification based on root traits. Front. Plant Sci. 7: 1864. doi: 10.3389/fpls.2016.01864
Malusá E., Ciesielska J. (2015): Biofertilizers: A Resource for Sustainable Plant Nutrition. In: Fertilizer Technology Vol. 1: Synthesis. (eds.) Shishir S., Pant K.K., Shailendra B., Studium Press LLC, 282-319 p.
Pedone-Bonfim M.V.L., da Silva F.S.B., Maia L.C. (2015): Production of secondary metabolites by mycorrhizal plants with medicinal or nutritional potential. Acta Physiol Plant, 37:27, DOI 10.1007/s1173801517813.
Wahbi S., Prin Y., Maghraoui T., Sanguin H., Thioulouse J., Oufdou K., Hafidi M., Duponnois, R. (2015): Field application of the mycorrhizal fungus Rhizophagus irregularis increases the yield of wheat crop and affects soil microbial functionalities. American Journal of Plant Sciences
Wang M., Martijn Bezemer T., van der Putten W.H., Biere A. (2015): Effects of the timing of herbivory on plant defense induction and insect performance in ribwort plantain (Plantago lanceolata L.) depend on plant mycorrhizal status. J Chem Ecol 41:1006–1017. DOI: 10.1007/s10886-015-0644-0
Zaller, J.G., Heigl, F., Ruess, L., Grabmaier, A. (2015): Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem. Scientific Reports 4: 5634, DOI 10.1038/srep05634.
Zitterl-Eglseer K., Nell M., Lamien-Meda A., Steinkellner S., Wawrosch C., Kopp B., Zitterl W., Vierheilig H., Novak J. (2015): Effects of root colonization by symbiotic arbuscular mycorrhizal fungi on the yield of pharmacologically active compounds in Angelica archangelica L. Acta Physiol Plant 37:21, DOI 10.1007/s1173801417502.
Del Fabbro, C., Prati, D. (2014): Early responses of wild plant seedlings to arbuscular mycorrhizal fungi and pathogens. Basic and Applied Ecology, 15 (6): 534-542, DOI 10.1016/j.baae.2014.08.004.
Liu H.L., Tan Y., Nell M., Zitter-Eglseer K., Wawscrah Ch., Kopp B., Wang B.M., Novak J. (2014):Arbuscular mycorrhizal fungal colonization of Glycyrrhiza glabra roots enhances plant biomass, phosphorus uptake and concentration of root secondary metabolites. Journal of Arid Land, vol. 6, no. 2: 186-194.
Nedorost Ľ., Vojtíšková J., Pokluda R. (2014): Influence of watering regime and mycorrhizal inoculation on growth and nutrient uptake of pepper (Capsicum annuum L.). ACTA HORTICULTURAE 1038(1038):559-564.
Püschel, D., Rydlová, J., Vosátka, M. (2014): Can mycorrhizal inoculation stimulate the growth and flowering ofpeat-grown ornamental plants under standard or reduced watering? Applied Soil Ecology 80: 93-99, DOI 10.1016/j.apsoil.2014.04.001.
Trouvé R., Drapela T., Frank T., Hadacek F., Zaller J.G. (2014): Herbivory of an invasive slug in a model grassland community can be affected by earthworms and mycorrhizal fungi. Biol Fertil Soils, 50:13-23.
Zhou Q., Ravnskov S., Jiang D., Wollenweber B. (2014): Changes in carbon and nitrogen allocation, growth and grain yield induced by arbuscular mycorrhizal fungi in wheat (Triticum aestivum L.) subjected to a period of water deficit. Plant Growth Regul DOI 10.1007/s10725-014-9977-x.
Couillerot O, Ramírez-Trujillo A, Walker V, von Felten A, Jansa J, Maurhofer M, Défago G, Prigent-Combaret C, Comte G, Caballero-Mellado J, Moënne-Loccoz Y (2013): Comparison of prominent Azospirillum strains in Azospirillum–Pseudomonas–Glomus consortia for promotion of maize growth. Appl Microbiol Biotechnol, vol. 97, no. 10: 4639-4649.
Hage-Ahmed K., Krammer J., Steinkellner S. (2013): The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato. Mycorrhiza 23:543–550, DOI 10.1007/s00572-013-0495-x.
Ravnskov S, Enkegaard A, Paaske K, Tringovska I, Spliid HN, Melander B (2013): Arbuscular mycorrhiza in an IPM strategy for field-grown vegetables. Poster session presented at Global Root Health Forum, Beijing, China.
Sedláček M, Pavloušek P, Lošák T, Zatloukalová A, Filipčík R, Hlušek J, Vitězová M (2013): The effect of arbuscular mycorrhizal fungi on the content of macro and micro elelements in grapevine (Vitis vinifera, L.) leaves. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, LXI, No. 1, pp. 187–191.
Zaller J.G., Wechselberger K.F., Gorfer M., Hann P., Frank T., Wanek W., Drapela T. (2013): Subsurface earthworm casts can be important soil microsites specifically influencing the growth of grassland plants. Biol Fertil Soils, 49: 1097-1107.
Albrechtová J., Látr A., Nedorost L., Pokluda R., Posta K. and Vosátka M (2012): Dual Inoculation by Mycorrhizal and Saprotrophic Fungi Applicable in Sustainable Cultivation Improves the Yield and Nutritive Value of Onion. The Scientific World Journal, vol. 2012, Article ID 374091, 8 pages, 2012. doi:10.1100/2012/374091.
Csima G, Hernádi I, Posta K (2012): Effects of pre- and post-transplant inoculation with commercial arbuscular mycorrhizal (AM) fungi on pelargonium (Pelargonium hortorum) and its microorganism community. Agricultural and Food Science. Volume 21 (1): 52-61. ISSN 1795-1895
Hernádi I, Sasvári Z, Albrechtová J, Vosátka M, Posta K (2012): Arbuscular mycorrhizal inoculants increase yield of spice pepper and affects indigenous fungal community in the field. HortScience, 2012, vol. 47 no. 5: 603-606.
Schäfer T., Hanke M.-V., Flachowsky H., König S., Peil A. et al. (2012): Chitinase activities, scab resistance, mycorrhization rates and biomass of own-rooted and grafted transgenic apple. Genetics and Molecular Biology, vol. 35 (2): 466-473
Sýkorová Z., Börstler B., Zvolenská S., Fehrer J., Gryndler M., Vosátka M., Redecker D. (2012):Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers. Mycorrhiza, vol. 22, no. 1: 69-80.
Vohník M, Sadowsky J J, Lukešová T, Albrechtová J, Vosátka M (2012): Inoculation with a ligninolytic basidiomycete, but not root symbiotic ascomycetes, positively affects growth of highbush blueberry (Ericaceae) grown in a pine litter substrate. Plant Soil, vol. 355, no. 1-2: 341-352.
Vosátka M, Látr A, Gianinazzi S, Albrechtová J (2012): Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis, 58:29–37.
Walker V., Couillerot O, von Felten A, Bellvert F, Jansa J, Maurhofer M, Bally R, Moënne-Loccoz Y, Comte G (2012): Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil, vol. 356, no. 1-2: 151-163.
Repáč I. (2011): Ectomycorrhizal inoculum and inoculation techniques. In: Rai M. and Varma A. (eds.) Diversity and Biotechnology of Ectomycorrhizae. Soil Biology, vol. 25: 43-63.
Zaller, J.G., Frank, T., Drapela, T. (2011): Soil sand content can alter effects of different taxa of mycorrhizal fungi on plant biomass production of grassland species. European Journal of Soil Biology, 47 (3): 175-181, DOI 10.1016/j.ejsobi.2011.03.001.
Zaller J.G., Heigl F., Grabmaier A., Lichtenegger C., PillerK., et al. (2011): Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities. PLoS ONE6(12): e29293. doi:10.1371/journal.pone.0029293
Kovářová M., Bartůňková K., Frantík T., Koblihová H., Prchalová K., Vosátka M. (2010): Factors influencing the production of stilbenes by the knotweed, Reynoutria × bohemica. BMC Plant Biology, 10:19
Langer I., Syafruddin S., Steinkellner S., Puschenreiter M., Wenzel W.W. (2010): Plant growth and root morphology of Phaseolus vulgaris L. grown in a split-root system is affected by heterogeneity of crude oil pollution and mycorrhizal colonization. Plant Soil, vol. 332: 339-355.
Nell M., Wawrosch Ch., Steinkellner S., Vierheilig H., KoppB.,Lössl A., Franz Ch., Novak J., Zitterl-Eglseer K. (2010): Root Colonization by Symbiotic Arbuscular Mycorrhizal Fungi Increases Sesquiterpenic Acid Concentrations in Valeriana officinalis L. Planta Med, 76: 393–39.
Chauhan, A. K., Varma, A. (2009): A Textbook of Molecular Biotechnology. K International Publishing House, New Dehli, India, 1352 p.
Farzaneh M., Wichmann S, Vierheilig H., Kaul H.-P. (2009): The effects of arbuscular mycorrhiza and nitrogen nutrition on growth of chickpea and barley. Pflanzenbauwissenschaften, 13 (1): 15–22, ISSN 1431-8857.
Hempel S, Stein C, Unsicker S B, Renker C, Auge H, Weisser W W, Buscot F (2009): Specific bottom–up effects of arbuscular mycorrhizal fungi across a plant–herbivore–parasitoid system. Oecologia 160:267–277, DOI 10.1007/s00442-009-1294-0
Stein C., Riemann C., Nemlel S., Renker C., Buscot F., Prati D., Auge H. (2009): Interactive effects of mycorrhizae and a root hemiparasite on plant community productivity and diversity. Oecologia, vol. 159, no. 1: 191-205.
Rydlová J., Püschel D., Vosátka M., Charvátová K. (2008): Different effect of mycorrhizal inoculation in direct and indirect reclamation of spoil banks. Journal of Applied Botany and Food Quality 82:15-20.
Ryszka P., Turnau K. (2007): Arbuscular mycorrhiza of introduced and native grasses colonizing zinc wastes: implications for restoration practices. Plant and Soil, vol. 298, no. 1-2: 219-229.